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Abstract 

Cardiovascular Diseases (CVDs) remain a major global health concern, necessitating accurate and 
comprehensive diagnostic techniques. Traditional medical imaging modalities, such as CT angiography, 
PET, MRI, and ultrasound, provide crucial but limited information when used independently. 
Image fusion techniques integrate complementary modalities, enhance visualization, and improve 
diagnostic accuracy. This paper presents a theoretical study of advanced image fusion methods 
applied to cardiovascular imaging. We explore wavelet-based, Principal Component Analysis (PCA), 
and deep learning-driven fusion models, emphasizing their theoretical underpinnings, mathematical 
formulation, and potential clinical applications. The proposed framework enables improved coronary 
artery visualization, cardiac function assessment, and real-time hemodynamic analysis, offering a 
non-invasive and highly effective approach to cardiovascular diagnostics.

MSC Codes: 68U10,94A08,92C55,65T60,62H25,68T07.

Literature Review

Survey of Advanced Image Fusion 
Techniques for Enhanced Visualization 
in Cardiovascular Diagnosis and 
Treatment
Gargi J Trivedi*
Department of Applied Mathematics, Faculty of Engineering and Technology, The Maharaja Sayajirao 
University of Baroda, Vadodara, India

Introduction
Cardiovascular Diseases (CVDs) are the leading cause of 

mortality worldwide, accounting for nearly 32% of global 
deaths. Early and accurate diagnosis is critical for effective 
intervention, where medical imaging plays a pivotal role by 
providing non-invasive visualization of cardiac structures, 
coronary arteries, and vascular abnormalities [1]. However, 
no single imaging modality is sufϐicient to capture all essential 
diagnostic details due to inherent limitations:

Computed Tomography Angiography (CTA) offers high-
resolution coronary imaging but lacks functional information 
[2]. Positron Emission Tomography (PET) provides 
metabolic and perfusion data but has poor spatial resolution 
[3]. Magnetic Resonance Imaging (MRI) offers excellent soft 
tissue contrast but is suboptimal for real-time visualization 
[4]. Ultrasound (US) enables real-time imaging of blood ϐlow 
but has limited penetration and resolution [5].

To address these challenges, image fusion techniques 
integrate complementary imaging modalities to produce 
enhanced diagnostic images that combine structural, 
functional, and dynamic information. Fused images improve 

visualization of coronary arteries, quantitative cardiac 
function analysis, and hemodynamic ϐlow assessment, 
aiding in accurate diagnosis and treatment planning. A basic 
representation of image fusion is shown in Figure 1.

This paper provides a comprehensive analysis of 
advanced image fusion techniques applied to cardiovascular 
imaging. Unlike previous studies, which focus on speciϐic 
fusion algorithms, this work (1) systematically compares 
classical and modern deep learning-driven fusion methods, 
(2) integrates mathematical foundations with practical 
applications, and (3) highlights emerging trends and 
challenges in multimodal cardiovascular imaging. We 
examine fusion techniques such as wavelet-based methods, 
Principal Component Analysis (PCA), and deep learning 
frameworks, evaluating their advantages, limitations, and 
clinical implications. By bridging the gap between theoretical 
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Figure 1: Image Fusion Two images of different modalities.

https://crossmark.crossref.org/dialog/?doi=10.29328/journal.jcmei.1001034&domain=pdf&date_stamp=2025-03-06


Survey of Advanced Image Fusion Techniques for Enhanced Visualization in Cardiovascular Diagnosis and Treatment

https://www.clinmedimagesjournal.com 002https://doi.org/10.29328/journal.jcmei.1001034

development and practical implementation, this study serves 
as a valuable resource for researchers and clinicians aiming 
to enhance cardiovascular disease diagnosis through image 
fusion.

Literature review
Medical image fusion has gained signiϐicant attention 

in recent years, particularly in cardiovascular diagnostics, 
where integrating structural and functional imaging provides 
crucial insights for clinical decision-making. This section 
discusses key advancements in image fusion methods, 
their applications in cardiovascular imaging, and recent 
computational approaches that enhance multi-modal fusion 
techniques.

Image fusion in medical imaging

Image fusion involves combining data from multiple 
imaging modalities to enhance visualization and improve 
diagnostic accuracy. Different fusion techniques have been 
developed over time, categorized based on the level at 
which integration occurs. In pixel-level fusion [6], raw pixel 
values from different modalities are directly merged using 
techniques such as intensity averaging or maximum selection. 
Feature-level fusion, on the other hand, extracts important 
image features and combines them using mathematical 
transformations [7], which helps retain signiϐicant details. 
Decision-level fusion integrates outputs from multiple 
classiϐiers or expert interpretations, ensuring more reliable 
diagnostic outcomes [8,9].

Earlier methods like simple averaging and intensity-
based fusion often led to information loss. To address these 
limitations, multi-resolution analysis techniques such as 
wavelet transforms were introduced. These approaches 
enabled fusion at different frequency scales, signiϐicantly 
improving contrast and preserving critical features. 
Wavelet-based fusion, by decomposing images into multiple 
frequency bands before reconstruction, proved to be more 
effective than basic intensity-based methods [10-13]. 
Further advancements, particularly with Non-Subsampled 
Contourlet Transform (NSCT), have been instrumental in 
vascular imaging applications, as they enhance directional 
information [14,15].

More recently, deep learning-based fusion techniques 
have gained prominence. Convolutional Neural Networks 
(CNNs) have been used to extract and merge relevant 
features, surpassing traditional methods in terms of accuracy. 
By automatically learning optimal fusion representations, 
CNN-based approaches reduce dependency on predeϐined 
mathematical models and improve overall fusion quality 
[1,16,17].

Multi-modal imaging in cardiovascular diagnosis

Cardiovascular imaging beneϐits signiϐicantly from 
multi-modal fusion, as different imaging techniques provide 

complementary diagnostic information [18]. For instance, 
Computed Tomography Angiography (CTA) offers detailed 
anatomical visualization of coronary arteries, while Positron 
Emission Tomography (PET) highlights areas of myocardial 
ischemia [19]. When these modalities are fused, they 
generate a more comprehensive diagnostic image, improving 
the accuracy of coronary artery disease assessment. The 
fusion process can be expressed mathematically as shown in 
Eq. (1):

   1  , 0,1f CT PETI I I                       (1)

where α is a weighting factor that optimizes the balance 
between anatomical and functional information. Similarly, 
MRI provides superior soft tissue contrast and allows for 
ventricular function analysis, whereas Doppler ultrasound 
offers real-time visualization of blood ϐlow dynamics. Fusing 
these two modalities enhances hemodynamic assessments, 
making it particularly useful for diagnosing heart valve 
disorders and cardiomyopathies [20].

Figure 2 illustrates the trend in published research on 
cardiovascular image fusion between 2015 and 2025, with 
projected estimates for the last three years. Recent studies 
have also explored deep learning-driven fusion approaches 
for cardiovascular applications. CNN-based models extract 
both spatial and temporal features, enabling automatic 
learning of fusion rules without relying on predeϐined 
mathematical expressions. These approaches show great 
promise in improving diagnostic accuracy and reducing the 
reliance on manual feature selection [21].

Computational methods for image fusion

Several computational techniques have been introduced 
to enhance fusion quality and efϐiciency. One widely used 
approach is wavelet transform, which enables multi-scale 
decomposition and ensures that ϐine details are preserved 
in the fused image. This method involves combining wavelet 
coefϐicients from source images using weighted fusion 
rules, followed by reconstruction using an inverse wavelet 
transform.

Figure 2: Annual Publications on Cardiovascular Image Fusion (2015–2025*).
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Principal Component Analysis (PCA) is another effective 
technique that reduces image dimensionality while retaining 
essential features. By computing the eigenvectors of the 
covariance matrix, PCA determines the most signiϐicant 
components, allowing for a more efϐicient fusion process 
[22].

With the advancement of deep learning, CNN-based fusion 
techniques have demonstrated remarkable improvements 
in extracting high-level features from multiple imaging 
modalities. Encoder-decoder architectures further reϐine 
spatial alignment and feature integration, leading to high-
quality fusion results.

Challenges and future directions

Despite notable progress in image fusion, several 
challenges remain that hinder its widespread clinical 
adoption. One major issue is spatial misalignment, as 
differences in resolution and orientation between imaging 
modalities necessitate robust image registration techniques. 
Computational complexity is another concern, particularly 
with deep learning-based methods that require substantial 
processing power, limiting their use in real-time clinical 
applications. Additionally, the lack of standardized 
evaluation metrics continues to be a challenge. While 
metrics such as Structural Similarity Index (SSIM) and Visual 
Information Fidelity (VIF) are widely used, they still require 
further reϐinement to ensure consistency in medical imaging 
assessments.

Future research should focus on the development of 
real-time AI-driven fusion techniques, improved automated 
image registration, and the seamless integration of fusion 
methods into clinical decision-support systems. While 
traditional approaches like wavelet transform and PCA have 
been extensively applied, deep learning-based methods are 
emerging as the most promising alternatives. To ensure 
their effective integration into clinical workϐlows, further 
efforts should be directed toward improving computational 
efϐiciency and automation.

Th eoretical foundation of image fusion

Image fusion is a technique used to integrate multiple 
images obtained from different modalities, producing a 
single, enhanced representation that improves diagnostic 
accuracy. In cardiovascular imaging, fusion techniques play a 
crucial role in combining structural, functional, and dynamic 
information from modalities such as CT angiography 
(CTA), PET, MRI, and ultrasound. This section presents 
the fundamental mathematical models and methodologies 
underlying image fusion, emphasizing their theoretical and 
practical aspects.

Mathematical formulation of image fusion

Mathematically, image fusion can be expressed as a 

function that combines two source images while retaining 
essential features from both. Let I1(x, y) and I2(x, y) represent 
two images obtained from different imaging modalities. The 
fused image If(x, y) is obtained using a fusion function F, 
which ensures optimal feature extraction while minimizing 
redundancy:

If(x, y) = F(I1(x, y), I2(x, y))                    (2)

Eq. 2 describes the general form of the fusion process, 
where FFF represents a fusion rule that determines how 
information is merged. An ideal fusion method must satisfy 
three fundamental properties: structural preservation, 
feature enhancement, and noise minimization. Structural 
preservation ensures that essential edges, textures, and 
spatial details are retained, while feature enhancement 
focuses on highlighting relevant image features. Additionally, 
the fusion process should suppress noise and artifacts, 
ensuring that the ϐinal image is clear and informative.

Several mathematical approaches have been proposed 
for implementing F(I1, I2), including wavelet-based fusion, 
Principal Component Analysis (PCA), and deep learning 
models. The following sections discuss these techniques in 
detail.

Wavelet transform-based image fusion

The wavelet transform is widely used in image fusion 
due to its ability to analyze images at multiple scales while 
preserving both high-frequency (edges and ϐine details) 
and low-frequency (background) components. The Discrete 
Wavelet Transform (DWT) decomposes an image into 
sub-bands at different resolution levels, allowing selective 
feature extraction and fusion. Given an input image I (x, y),
the wavelet decomposition results in four sub-band 
representations: approximate low-frequency coefϐicients WL, 
horizontal detail coefϐicients H

HW , vertical detail coefϐicients 
V
HW , and diagonal detail coefϐicients D

HW .

For two source images I1 and I2 , their wavelet 
representations are given by:
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Eq. 3 represents the decomposition of the two input 
images. The fusion process then applies different fusion 
rules for the components. The low-frequency components 
are typically combined using a weighted averaging approach:

1 2    (1 )F
L L LW W W                       (4)

while the high-frequency components are merged using a 
maximum selection rule:

 1 2  , H HF
H H HW max W W                    (5)

These fusion rules, expressed in Eq. 2 and 3, ensure that 
essential structural and textural details are preserved. The 
parameter α\alphaα controls the contribution of each image 
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to the ϐinal fused result. Once the fusion process is complete, 
the ϐinal fused image is reconstructed by applying the Inverse 
Wavelet Transform (IWT):

   , F F
f L HI IWT W W                     (6)

which is given in Eq. 6. Wavelet-based fusion is 
particularly effective in medical imaging applications as it 
enhances contrast while minimizing noise, making it suitable 
for combining modalities such as CT and PET or MRI and 
ultrasound.

Principal component analysis for image fusion

Principal Component Analysis (PCA) is a statistical 
method commonly used in image fusion for dimensionality 
reduction [22]. This technique transforms images into a new 
feature space and selects the most signiϐicant components for 
fusion. Suppose two source images I1, and I2 contain N pixels 
each. These images can be reshaped into column vectors and 
combined into a data matrix X:

1

2

 
I

X
I
 

  
 

                     (7)

as represented in Eq. 7 . The covariance matrix of X is then 
computed as:

1  TC XX
N

                      (8)

Eq.8 captures the variance between the image components. 
The eigenvectors U of C are computed by solving:

CU = λU                     (9)

where λ represents the eigenvalues associated with 
each eigenvector Eq. 9. The fused image is then obtained by 
projecting the input images onto the principal components:

If = UT X                     (10)

which is given by Eq. 10. PCA-based fusion effectively 
enhances contrast and eliminates redundant information, 
making it a practical approach for combining CT and PET or 
MRI and ultrasound images.

Deep learning-based image fusion

Recent advances in deep learning have enabled data-
driven fusion techniques that automatically learn feature 
representations from multi-modal images. Unlike traditional 
methods that rely on predeϐined mathematical rules, 
Convolutional Neural Networks (CNNs) extract essential 
features and optimize fusion processes.

In a typical CNN-based fusion model, the input images I1, 
and I2 are processed through convolutional layers to extract 
feature maps:

F1 = CNN(I1), F2 = CNN(I2)                (11)

as shown in Eq. 11. The extracted features are then 

combined using a fusion function G:

Ff = G(F1,F2)                  (12)

where G can take various forms, such as max selection, 
weighted summation, or attention-based fusion Eq. 12. The 
fused feature map is then passed through a decoder network 
to reconstruct the ϐinal fused image:

If = CNN–1 (Ff)                 (13)

Eq. 13 represents the reconstruction process. Deep 
learning fusion methods automatically optimize fusion 
strategies, enhancing texture, contrast, and spatial details. 
This makes them particularly effective for MRI-ultrasound 
fusion and complex cardiovascular imaging applications.

Performance evaluation of fusion methods

To assess the effectiveness of different fusion techniques, 
several quantitative metrics are commonly used. The 
Structural Similarity Index (SSIM) measures structural 
preservation and is deϐined in Eq. 14:

    
  

1 1 1 2

1 2 1 2

1 2
1 2 2 2 2 2

1 2

2   2   
,  

          
I I I I

I I I I

C C
SSIM I I

C C

  

   

 


   
              (14)

Another key metric is the Peak Signal-to-Noise Ratio 
(PSNR), given by:

2

1010log   MAXPSNR
MSE

 
  

 
                 (15)

Eq. 15 evaluates noise suppression and image clarity. 
Additionally, entropy is used to quantify the amount of 
retained information in Eq. 16:

    logE p x p x                      (16)

 Higher entropy values indicate improved information 
retention in the fused image.

By applying these performance metrics, different fusion 
methods can be systematically compared to determine their 
effectiveness in medical imaging applications.

Different image fusion techniques have their own 
advantages and limitations. Wavelet transform preserves 
both high and low-frequency details, making it effective 
for structural preservation, though it is computationally 
expensive. PCA fusion reduces redundancy by focusing on 
dominant features, but it may lose ϐine details. Deep learning-
based methods adaptively learn fusion rules and enhance 
image quality but require large datasets and computational 
resources. A comparative analysis of these methods is 
summarized in Table 1.

Applications in cardiovascular imaging

Cardiovascular imaging is essential for diagnosing and 
monitoring heart-related diseases. Since no single imaging 
modality can fully capture the structure, function, and 
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dynamics of the heart, image fusion techniques are employed 
to integrate complementary information. This leads to 
enhanced visualization and improved diagnostic accuracy. 
Key applications of image fusion in cardiovascular imaging 
include coronary artery visualization, cardiac function 
assessment, and hemodynamic ϐlow analysis.

Visualization of coronary arteries

Coronary Artery Disease (CAD) is a major cause of 
morbidity and mortality, requiring early detection of 
arterial narrowing and reduced blood supply. Different 
imaging techniques have limitations: computed Tomography 
Angiography (CTA) provides high-resolution images but 
lacks functional data, while Positron Emission Tomography 
(PET) highlights ischemic regions but lacks anatomical 
precision [23,24]. A promising approach is the fusion of CTA 
and PET images, which combines the anatomical details of 
CTA with the metabolic insights from PET.

Let ICT (x, y) and IPET (x, y) represent the CTA and PET 
images, respectively. The fused image Ifused is obtained using a 
weighted fusion approach shown in Eq. 17:

      1 ,    [0,1] fused CT PETI I I                        (17)

 where α is a weighting factor optimized for clinical 
relevance. CTA contributes high-resolution anatomical 
details, while PET adds functional information regarding 
myocardial perfusion.

By integrating these modalities, clinicians can 
simultaneously assess arterial plaques and ischemic regions, 
enabling better risk stratiϐication and informed decision-
making regarding interventions such as stenting or bypass 
surgery.

IMRI and ultrasound IUS images are computed to capture the 
correlation between the modalities. Next, the eigenvectors 
(U) of C are extracted, and both images are projected onto 
these principal components using the transformation in Eq. 
18:

   MRIT
fused

US

I
I U

I
 

  
 

                 (18)

Cardiac function assessment

Evaluating cardiac function is crucial for diagnosing 
heart failure, cardiomyopathies, and valvular diseases. 
Magnetic Resonance Imaging (MRI) provides high-resolution 
anatomical data but lacks real-time imaging capabilities. 

Conversely, ultrasound (echocardiography) offers real-
time assessment of cardiac motion but is limited by depth 
resolution. Combining MRI and Doppler ultrasound enables 
simultaneous visualization of myocardial structure and 
blood ϐlow dynamics [25].

The fusion process employs Principal Component 
Analysis (PCA) to extract essential features from both MRI 
and ultrasound images. The covariance matrix C of the MRI 
image IMRI and ultrasound image IUS is computed as:

   1

1     
TN i i

MRI MRI US USi
C I I I I

N 
   ‥ ‥                 (19) 

where I..
MRI and I I..

US represent the mean intensities
of the respective images. The eigenvectors U of C are used
to transform the images into principal components,
leading to the fused image: 

   MRIT
fused

US

I
I U

I
 

  
 

                   (20)

This fused representation enhances visualization of 
myocardial contraction, ventricular wall motion, and blood 
ϐlow, improving diagnostic accuracy.

Hemodynamic fl ow analysis

Analyzing blood ϐlow in the heart is critical for detecting 
conditions such as aortic stenosis and mitral valve 
regurgitation. Doppler ultrasound captures real-time ϐlow 
but lacks depth resolution, while MRI Phase-Contrast Imaging 
(PC-MRI) provides velocity maps but is time-consuming [26]. 
By fusing Doppler ultrasound with PC-MRI, a comprehensive 
velocity ϐield can be obtained.

Let VUS (x, y, t) and VMRI (x, y, t) denote the velocity ϐields 
from Doppler ultrasound and PC-MRI, respectively. The 
fused velocity ϐield is given by Eq. 21:

        , , , ,    1 ( , , ),   0,1  MRIf x y t US x y tV V V x y t                    (21) 

This fusion enhances the detection of abnormal blood 
ϐlow patterns, assisting in diagnosing valvular diseases and 
predicting stroke risk by identifying turbulent ϐlow regions.

Image fusion also plays a vital role in interventional 
cardiology. For example, integrating Computed Tomography 
(CT) with ultrasound aids in precise valve placement during 
Transcatheter Aortic Valve Replacement (TAVR). Similarly, 
combining ϐluoroscopy with MRI assists in catheter-based 
ablation procedures, ensuring precise navigation of cardiac 
structures. Table 2 summarizes key applications of image 
fusion in cardiovascular imaging.

Table 1: Comparative Analysis of Image Fusion Techniques.
Fusion Method Advantages Limitations

Wavelet Transform Effectively preserves structural details and frequency components, making it 
suitable for medical imaging applications.

Computationally expensive and may introduce 
artifacts at sharp transitions.

Principal Component 
Analysis (PCA)

Reduces data redundancy and enhances contrast by extracting dominant 
features.

May lose ϐine details, especially in complex multi-
modal images.

Deep Learning-based 
Fusion

Automatically learns fusion rules, enhancing texture and feature 
representation. Works well for complex medical images.

Requires a large dataset for training and signiϐicant 
computational resources.
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Future directions in cardiovascular image fusion

Despite signiϐicant advancements, challenges in 
cardiovascular image fusion remain, such as computational 
demands, accurate image registration, and the integration 
of Artiϐicial Intelligence (AI) for real-time processing. 
Future research should focus on AI-assisted fusion models, 
hybrid imaging devices, and personalized diagnostics 
tailored to patient-speciϐic anatomy and physiology. These 
developments aim to enhance real-time imaging, improve 
diagnostic precision, and optimize treatment planning in 
cardiology.

Image fusion continues to improve cardiovascular 
diagnostics by integrating anatomical, functional, and 
hemodynamic data. Further advancements in AI-driven 
fusion and automated image registration will contribute to a 
more efϐicient and patient-speciϐic cardiac care summary as 
shown in Table 3.

Challenges in cardiovascular image fusion

Cardiovascular image fusion has revolutionized how 
medical professionals diagnose and treat heart conditions. 
By combining information from different imaging modalities, 
such as CT, MRI, PET, and ultrasound, clinicians gain a more 
comprehensive view of the cardiovascular system. However, 
despite these advancements, several challenges remain, 
preventing widespread clinical adoption. These challenges 
span technical, computational, and clinical aspects, requiring 
innovative solutions to improve accuracy, efϐiciency, and 
usability. This section explores some of the key obstacles in 
cardiovascular image fusion and potential ways to address 
them.

Image registration and spatial misalignment

One of the biggest challenges in cardiovascular image 
fusion is aligning images accurately. Different imaging 
techniques capture the heart from various angles and at 
different resolutions, making it difϐicult to achieve perfect 
alignment. For example, CT and MRI produce detailed static 
images, while ultrasound and PET are more prone to motion-
related distortions. If images are misaligned, the resulting 
fusion may be blurry or misleading, reducing its reliability in 
clinical settings [27].

To tackle this issue, researchers have developed methods 
such as feature-based registration, which aligns images 

based on anatomical landmarks, and mutual information 
maximization, which ensures that shared content between 
images is properly matched. AI-driven deep learning models 
are also emerging as powerful tools for automatic image 
alignment. Future advancements will likely focus on real-
time AI registration techniques that require minimal human 
intervention and hybrid approaches combining traditional 
and deep-learning-based methods for improved precision.

Variability in image quality and noise

Another challenge in image fusion is the signiϐicant 
difference in quality between imaging modalities. While CT 
and MRI provide high-resolution images, PET and ultrasound 
often suffer from lower Signal-to-Noise Ratios (SNR), making 
it difϐicult to merge images seamlessly. Differences in 
contrast, brightness, and resolution can lead to suboptimal 
fusion results [28].

Current solutions involve multi-scale wavelet-based 
denoising, which reduces noise while preserving important 
image details, and histogram equalization, which normalizes 
contrast levels across modalities. Deep learning-based super-
resolution techniques are also being used to enhance low-
quality images before fusion. Moving forward, researchers 
aim to develop adaptive noise reduction methods that 
preserve clinically relevant details and AI-powered super-
resolution techniques tailored for PET and ultrasound 
images.

Computational complexity and processing time

Cardiovascular image fusion, particularly when deep 
learning techniques are involved, requires substantial 
computational power. Real-time fusion is essential for 
interventional procedures, yet current methods often 
experience delays due to processing constraints [29,30]. 
These delays can limit the practical application of fusion 
technology in critical medical situations.

To address this, researchers have turned to parallel 
processing and GPU acceleration to speed up computations. 
Compressed sensing techniques are also being explored to 
reduce computational load without compromising quality. 
Future developments may include edge computing solutions 
that enable real-time fusion on portable ultrasound and MRI 

Table 2: Applications of Image Fusion in Cardiovascular Imaging.
Application Modalities Used Key Bene its

Coronary Artery 
Visualization CT + PET Combines anatomical and functional data

Cardiac Function 
Assessment MRI + Ultrasound Enhances real-time motion visualization

Hemodynamic Flow 
Analysis Doppler + PC-MRI Provides comprehensive blood ϐlow 

mapping
Guided Cardiac 
Interventions Fluoroscopy + MRI Improves catheter navigation accuracy

Table 3: Summary of Challenges and Future Research Directions.

Challenge Current Limitations Future Research 
Directions

Image Registration Misalignment between 
modalities

AI-driven automatic 
registration

Noise and Resolution 
Differences

PET/Ultrasound suffers from 
low SNR

AI-based super-resolution 
models

Computational 
Complexity

Deep learning methods require 
high-power

Edge computing & 
Quantum AI

Evaluation Metrics Lack of clinically relevant 
metrics

Task-speciϐic fusion 
evaluation

Clinical 
Implementation

Fusion not integrated into 
hospital workϐlows

PACS-integrated real-time 
fusion
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machines, as well as the potential use of quantum computing 
for medical image processing.

Lack of standardized evaluation metrics

Assessing the quality of fused images is not always 
straightforward, as commonly used metrics like PSNR 
(Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity 
Index) do not necessarily reϐlect clinical usefulness. Different 
radiologists may have varying preferences for what 
constitutes a good fusion result, making standardization 
difϐicult.

Some current approaches include task-based evaluation 
metrics, which assess the effectiveness of fused images 
in improving diagnostic accuracy, and machine learning 
classiϐiers trained on expert-annotated data to automate 
fusion quality assessments [31]. Future research will likely 
focus on developing clinically driven evaluation metrics that 
prioritize diagnostic performance over pixel-level similarity 
and incorporating radiologist feedback into AI-driven quality 
assessment models.

Real-time implementation in clinical workfl ows

Most existing fusion techniques are designed for ofϐline 
processing, which limits their use in emergency situations 
where rapid decision-making is crucial. Integrating image 
fusion into clinical workϐlows, such as PACS (Picture 
Archiving and Communication Systems), remains a challenge 
[32].

Current solutions include cloud-based fusion systems 
that allow remote access and real-time collaboration among 
healthcare professionals. AI-driven decision support systems 
are also being developed to automatically interpret fused 
images and assist clinicians. The future of real-time fusion lies 
in edge-based algorithms that can be embedded directly into 
imaging devices, enabling instant fusion without the need for 
extensive post-processing. Additionally, standardizing AI-
driven fusion software across different hospitals and imaging 
platforms will be key to widespread adoption.

Future directions in cardiovascular image fusion

To push the ϐield forward, researchers must focus on 
automation, clinical validation, and AI-driven optimization. 
Below are some key areas of future development:

• AI and deep learning for fully automated image 
fusion: Many current fusion methods require manual 
ϐine-tuning. The future goal is to develop self-learning 
AI models that can automatically determine the best 
fusion approach for each patient, adapting to different 
imaging conditions without human intervention.

• Multi-modal fusion for personalized cardiac 
diagnosis: Existing fusion techniques are often 
one-size-ϐits-all, but patient-speciϐic variations in 

anatomy and physiology must be accounted for. 
Future advancements will involve adaptive AI models 
trained on personalized data, with fusion strategies 
customized based on age, gender, and medical history.

• Real-time image fusion for interventional 
cardiology: Real-time feedback during procedures is 
critical but currently limited by processing delays. The 
future lies in low-latency fusion techniques enabled 
by edge computing and lightweight neural networks 
optimized for speed.

• Hybrid imaging modalities for direct multi-modal 
fusion: Today’s fusion methods rely on separate 
image acquisitions, which require manual alignment. 
A major step forward would be the development of 
dual-modality imaging systems, such as combined 
MRI + ultrasound scanners, which would capture 
multi-modal data simultaneously and eliminate the 
need for post-processing alignment.

• Explainable AI for trustworthy image fusion in 
healthcare: Many AI-based fusion models function as 
black boxes, making it difϐicult for clinicians to trust 
their decisions. Future AI systems must incorporate 
explainability features, such as attention-based models 
that highlight key regions of interest and clinician-
in-the-loop frameworks that provide transparent 
insights alongside fused images.

Table 3 provides a summary of key challenges in 
multimodality cardiac imaging and outlines potential future 
research directions to address these limitations.

While cardiovascular image fusion holds great promise 
for improving diagnostics and treatment planning, several 
technical and clinical challenges must be overcome. Future 
innovations in AI, real-time processing, hybrid imaging, 
and explainable AI will be crucial in making fusion a 
standard practice in cardiology. By addressing these 
challenges, cardiovascular imaging will move toward a 
future where fusion-based diagnostics are fully automated, 
highly personalized, and seamlessly integrated into clinical 
workϐlows, ultimately improving patient care and outcomes.

Conclusion
Cardiovascular Diseases (CVDs) remain a leading cause 

of mortality worldwide, highlighting the need for improved 
diagnostic imaging. This paper explored various image fusion 
techniques that combine complementary modalities like CT, 
MRI, PET, and ultrasound to enhance visualization, accuracy, 
and clinical decision-making. By integrating structural 
and functional imaging, fusion techniques provide a more 
comprehensive assessment of cardiovascular conditions.

We examined key fusion methodologies, including 
wavelet transform-based fusion for preserving spatial and 
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frequency details, PCA for dimensionality reduction, and 
deep learning approaches such as CNNs for automated 
feature extraction. Applications like CT-PET fusion for 
detecting arterial blockages, MRI-ultrasound fusion for real-
time cardiac function analysis, and Doppler ultrasound-PC 
MRI fusion for assessing blood ϐlow patterns were discussed, 
demonstrating the clinical potential of these techniques.

Despite these advancements, challenges remain. 
Computational complexity, misalignment issues, and the need 
for manual parameter tuning limit widespread adoption. 
The development of real-time AI-driven fusion models 
and dual-modality scanners can address these barriers, 
improving efϐiciency and accuracy. Additionally, ensuring the 
transparency of deep learning models will enhance clinical 
trust and usability.

Image fusion represents a transformative shift in 
cardiovascular imaging, enabling precise, non-invasive 
diagnostics and improving treatment planning. As technology 
advances, AI-driven real-time fusion and hybrid imaging 
systems will further revolutionize cardiovascular care, 
ultimately enhancing patient outcomes and reducing the 
global burden of CVDs.
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