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Abstract 

This paper reviews recent advances and future trends in feature processing 
methods within the fi eld of artifi cial intelligence. With the rapid development of deep 
learning and big data technologies, feature processing has become essential for 
enhancing AI model performance. We begin by revisiting traditional feature processing 
methods, then focus on deep learning-based feature extraction techniques, automated 
feature engineering, and the application of feature processing in specifi c domains. The 
article also analyzes the current research challenges and outlines future development 
directions, offering structured insights for both researchers and practitioners across 
disciplines
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Introduction
Feature processing constitutes a critical component in 

artiϐicial intelligence and machine learning, directly impacting 
model performance and generalization capabilities. As 
data scales and complexity continue to increase, traditional 
methods often fall short in addressing the complexity of 
modern AI systems. Recent advances in deep learning have 
introduced novel opportunities for feature processing, 
positioning automated feature engineering as a key research 
focus. This paper aims to explore the latest advancements in 
AI feature processing methods, analyze current challenges, 
and prospect future trends to provide insights for related 
research.

Traditional feature processing methods
Data processing

Traditional feature processing methods mainly include 
data preprocessing, feature selection, and dimensionality 
reduction techniques. Data preprocessing is the ϐirst step in 
feature processing, including data cleaning, missing value 
processing, outlier detection, and data standardization. These 
steps are crucial for improving data quality and subsequent 
feature processing effectiveness. Data cleaning involves 
processing noisy data and identifying erroneous values, 
while missing value processing includes interpolation, 
deletion, or using algorithms to predict missing values. 
Outlier detection identiϐies outliers in data through statistical 

methods or machine learning algorithms to prevent their 
negative impact on model training. Data standardization 
uses normalization or normalization methods to transform 
features of different scales into the same range, in order 
to improve the convergence speed and performance of the 
model.

Feature selection

Feature selection is the process of selecting the most 
valuable subset of features from the original feature 
set. Common methods include ϐiltering, packaging, and 
embedding. The ϐiltering method evaluates the importance of 
features through statistical indicators such as chi square test, 
mutual information, etc. The packaging method combines 
the feature selection process with model training, iteratively 
selecting the optimal feature subset. The embedding rule 
automatically performs feature selection during model 
training, such as Lasso regression and decision tree 
algorithms. These methods each have their own advantages 
and disadvantages [1,2] and in practical applications, they 
need to be selected and combined based on speciϐic problems 
and data characteristics.

Dimensionality reduction

Dimensionality reduction techniques reduce the number 
of features while retaining important information. Principal 
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Component Analysis (PCA) and Linear Discriminant Analysis 
(LDA) are two widely used linear dimensionality reduction 
methods. PCA transforms the original features into a set 
of linearly independent principal components through 
orthogonal transformation, thereby achieving dimensionality 
reduction. LDA is a supervised dimensionality reduction 
method that seeks the optimal projection direction by 
maximizing inter class distance and minimizing intra class 
distance. In addition, nonlinear dimensionality reduction 
methods such as t-SNE and UMAP perform well in handling 
complex data structures and are widely used in visualization 
and high-dimensional data analysis.

These traditional methods have played an important role 
in past AI applications, but as data complexity increases, 
their limitations in handling non-linear relationships and 
automatic feature extraction become increasingly apparent. 
This has prompted researchers to explore more advanced 
feature processing methods based on deep learning.

Feature extraction based on deep learning
Feature extraction with CNNs

The rise of deep learning technology has brought 
revolutionary changes to feature processing. Convolutional 
Neural Networks (CNNs) perform well in the ϐield of image 
processing, capable of automatically learning hierarchical 
feature representations. CNNs extract local features using 
convolutional layers, reduce dimensionality with pooling 
layers, and capture global patterns via fully connected layers 
, thereby achieving efϐicient feature extraction of images. 
In computer vision tasks, pre trained CNN models such as 
ResNet and Inception have become standard tools for feature 
extraction [3-5].

Sequence modeling via RNNs

Recurrent Neural Networks (RNNs) and their variants, 
such as Long Short Term Memory Networks (LSTM) [6-
8], exhibit powerful feature extraction capabilities when 
processing sequential data. RNN captures temporal 
dependencies in sequence data through a cyclic structure, 
while LSTM effectively solves the problem of gradient 
vanishing in long sequence training by introducing memory 
units and gating mechanisms. These models have achieved 
signiϐicant results in ϐields such as natural language 
processing and speech recognition.

Autoencoders & generative models

The autoencoder, an unsupervised learning model, 
captures effective data representations through encoding 
and decoding phases , and has wide applications in 
feature dimensionality reduction and denoising. The basic 
autoencoder consists of an encoder and a decoder, which 
learn low dimensional representations of data by minimizing 
reconstruction errors. Extended models such as Variational 

Autoencoder (VAE) and Generative Adversarial Network 
(GAN) [9-12] have further improved the expressive power of 
feature learning and performed well in tasks such as image 
generation and data augmentation.

These deep learning methods can automatically 
learn complex feature representations from raw data, 
greatly reducing the workload of manually designing 
features. However, they also face challenges such as poor 
interpretability and the need for large amounts of training 
data, which has driven the development of automated feature 
engineering.

Automated feature engineering and latest 
research hotspots
Neural architecture search

Automated feature engineering aims to reduce manual 
intervention and improve the efϐiciency and effectiveness 
of feature processing. Neural Architecture Search (NAS) 
optimizes the feature extraction process by automating the 
design of neural network structures [13-17]. NAS applies 
reinforcement learning, evolutionary algorithms, or gradient-
based techniques to identify optimal architectures within a 
deϐined search space  within a predeϐined search space. This 
approach enhances model performance while signiϐicantly 
reducing the burden of manual architecture design.  For 
more details of NAS, (Figure 1).

Figure 1: NAS.
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Meta-learning for feature adaptation

Meta learning methods enable models to quickly adapt to 
the feature processing requirements of new tasks by learning 
how to learn. Meta learning trains models on multiple related 
tasks to enable them to quickly adapt to new tasks.

This method performs well in small sample learning and 
cross domain transfer learning, providing new ideas for 
feature processing.

RL-based feature selection framework

The feature selection method based on reinforcement 
learning dynamically optimizes the feature selection strategy 
through interaction with the environment. This method 
models the feature selection process as a Markov decision 
process, guiding the agent to learn the optimal feature subset 
through a reward mechanism. Reinforcement learning 
methods have unique advantages in dealing with high-
dimensional data and dynamic feature selection problems 
[18-21].

These methods represent the forefront of current 
feature processing research [22,23], not only improving the 
automation level of feature processing, but also providing new 
ideas for processing high-dimensional and heterogeneous 
data [24]. However, how to balance the degree of automation 
with model interpretability, and how to effectively apply 
these methods to practical scenarios, is still a problem that 
needs further research [25,26].

The application and challenges of feature 
processing in specifi c fi elds

Feature processing methods have shown great potential 
in different AI application ϐields. In the ϐield of computer 
vision, feature processing techniques have improved the 
accuracy of image recognition and object detection. For 
example, in medical image analysis, feature processing 
methods that combine domain knowledge can effectively 
extract lesion features and assist doctors in diagnosis. In the 
ϐield of autonomous driving, multi-sensor data fusion and 
real-time feature processing technology are key to achieving 
environmental perception and decision-making.

Enhance the depth of algorithm application and 
cross modal practice

In natural language processing, word embeddings and 
context aware feature representations signiϐicantly improve 
the performance of language models. Pre trained language 
models such as BERT, GPT, etc. learn universal language 
features through large-scale corpora and perform well in 
downstream tasks. However, how to effectively handle 
multilingual and multimodal text data, as well as how to 
achieve effective feature representation in low resource 
languages, remains an urgent problem to be solved.

In the technical domain, integrating advanced algorithms 
with real-world applications can signiϐicantly enhance the 
practical relevance of feature processing. For instance, in 
industrial defect detection, convolutional neural networks 
(CNNs) coupled with attention mechanisms (e.g., CBAM [27]) 
have demonstrated superior performance in identifying 
micro-cracks on metal surfaces. A comparative study on the 
NEU-DET dataset revealed a 15% accuracy improvement 
over traditional methods like Haralick texture analysis. In 
autonomous driving, multimodal feature fusion techniques 
address the challenges of heterogeneous sensor data. The 
PointPainting algorithm [28] effectively aligns LiDAR point 
clouds with camera images by projecting semantic labels from 
2D images onto 3D points, achieving a 12% higher mAP on the 
nuScenes benchmark. Additionally, cross-domain adaptation 
of architectures, such as applying Transformer-based models  
(e.g., ESM-2 [29]) to protein sequence analysis, illustrates 
how NLP-inspired feature representations can advance 
bioinformatics tasks like fold recognition. These examples 
highlight the need to tailor deep learning frameworks to 
domain-speciϐic challenges and promote interdisciplinary 
integration  while leveraging interdisciplinary insights.

Deepen medical data-driven solutions

In the ϐield of bioinformatics, effective feature processing 
is crucial for gene sequence analysis and protein structure 
prediction. Deep learning models such as AlphaFold have 
achieved breakthroughs in protein structure prediction by 
combining evolutionary information and physical constraints 
[30]. However, the complexity, high dimensionality, and noise 
issues of biological data pose signiϐicant challenges to feature 
processing, requiring the development of more robust and 
interpretable feature processing methods.

Clinical applications require robust feature processing 
methods that optimize accuracy, ensure interpretability, and 
preserve data privacy. In breast cancer histopathology, Vision 
Transformers (ViTs) have outperformed traditional texture-
based features (e.g., Haralick descriptors) by achieving an AUC 
of 0.92 versus 0.85 on the BreakHis dataset [31], attributed to 
their ability to capture global contextual patterns. To mitigate 
data scarcity, federated learning frameworks support multi-
institutional collaboration  without compromising patient 
privacy. For example, a federated feature extraction model 
trained on mammography data from ϐive hospitals improved 
malignancy detection F1-scores by 18% compared to 
singlecenter models [32]. Furthermore, interpretability tools 
like Grad-CAM [33] bridge the gap between AI decisions and 
clinical trust. In lung nodule detection, Grad-CAM heatmaps 
highlight malignancy-associated regions in CT scans , 
aligning with radiologists diagnostic criteria (validated 
in a 2023 Nature Medicine study [34]). These advances 
emphasize the need for feature engineering that harmonizes 
technical innovation with clinical workϐlows and ethical 
considerations.
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Addressing the challenges of robustness and 
real-time performance in industrial scenarios

Engineering applications require feature processing 
methods that address realworld robustness and efϐiciency 
constraints. In semiconductor wafer inspection, self-
supervised learning frameworks like SimCLR [35] extract 
discriminative features from limited labeled data, reducing 
false defect rates from 8% to 3% on the WM-811K dataset. 
For real-time systems, lightweight architectures such as 
MobileNetV3 [36] optimize feature extraction on edge devices. 
Deployed on NVIDIA Jetson Xavier, MobileNetV3 reduced 
inference latency from 50 ms to 20 ms while maintaining 
98% accuracy in automotive object detection. Multimodal 
fusion also plays a pivotal role in predictive maintenance: 
integrating vibration sensors, thermal imaging, and acoustic 
signals via hybrid models (e.g., wavelet-CNN [37] achieved 
96% fault prediction accuracy in a smart factory case 
study (IEEE Transactions on Industrial Informatics, 2023 
[38]). These use cases emphasize balancing computational 
efϐiciency, data heterogeneity, and real-world variability in 
industrial AI applications.

These applications also face unique challenges. For 
example, how to handle feature fusion of multimodal 
data, how to deal with data scarcity and class imbalance, 
and how to improve the interpretability of the feature 
processing process. Addressing these challenges requires 
interdisciplinary collaboration and innovative thinking.

Conclusion
As a core component of artiϐicial intelligence, feature 

processing methods are undergoing rapid development and 
transformation. From traditional methods to deep learning 
based automatic feature extraction, and then to automated 
feature engineering, new technologies and methods are 
constantly emerging in this ϐield. In the future, feature 
processing research may pay more attention to multimodal 
data fusion, small sample learning, interpretability, and other 
aspects. As AI application scenarios expand, the development 
of more universal and efϐicient feature processing methods 
is expected to become a key focus. These advancements are 
expected to elevate AI development and support innovative 
applications across domains.  
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